
Skip to content

Welcome to Balancy Documentation
Balancy is a superhero that swoops in to save game studios from the clutches of mediocrity. Our mission? To

increase LTV and help studios triumph over competitors by customizing and personalizing gaming experiences.

What is Balancy?

Balancy is a robust, flexible tool designed to run Live Operations and manage in-game economies. It facilitates

essential features such as virtual currencies, inventory systems, player progression, and more. Our core feature

helps game developers run and analyze Live Operations, which, as a result, increases a game's LTV. LiveOps

managers and Game Designers get convenient tools to work remotely with Game Events, Personalised Offers, A/B

Testing, and Segmentation. Balancy requires minimum effort from engineers and helps them with many

automated tools.

Why use Balancy?

Balancy provides extensive features to support your game's LiveOps and economy, whether you're developing a

small indie game or a large-scale multiplayer project. It offers flexibility and customization to suit your specific

needs. By using Balancy, you can save development time and focus more on gameplay and user experience.

Watch Video

Join Our Discord

How to use this guide?

This guide is divided into several sections:

Quick Start: This section covers setting up Balancy and running LiveOps.

LiveOps: Here, you'll find more detailed instructions on using Live Operations.

Content Management System: This section overviews the Balancy balance editor, inventory, and in-game

economy.

Deploy: Learn how to deliver data from Balancy to players.

Feel free to navigate through the documentation in a way that suits best to your needs. If you have any questions

or issues, please don't hesitate to contact our support team. We're here to help!

•

•

•

•

Page 1

https://discord.gg/X27tuQR
/basic/basic/
/basic/basic/
/liveops/basic/
/liveops/basic/
/data_editor/basic/
/data_editor/basic/
/data_editor/deploy/
/data_editor/deploy/

Skip to content

Page 2

Skip to content

Step-by-step Integration

1. Basic Integration (Platform) [30 minutes]

Create an account at Balancy.

Once you see the dashboard, create a new game or use our Template (Recommended).

If you created a new game, install LiveOps package.

(Optional) Create a new template GameItem to define your game item's properties.

Import your game items using our GoogleSheets Synchronisation or add items manually.

Deploy

1.

2.

3.

4.

5.

6.

Page 3

https://balancy.dev/
/game_templates/game_shop/how_to_start/
/liveops/basic/
/game_templates/game_shop/how_to_start/
/game_templates/game_shop/how_to_start/
/data_editor/spreadsheets/
/liveops/smart_offers/#item
/data_editor/deploy/

Skip to content

Page 4

Skip to content

Integration Guide
Efficiently integrate Balancy into your gaming environment with our Unity plugin and initialize it with ease.

Plugin Installation

Ensure a smooth integration with these straightforward steps:

Download Plugin: Obtain the most recent version of the plugin here.

Import to Unity: Incorporate the Balancy plugin into your Unity project.

Authorization:

Navigate to Tools ► Balancy ► Config post-compilation.

Use the Balancy platform credentials to authorize.

Game Code Generation:

Choose the relevant game.

Click Generate Code to proceed.

1.

2.

3.

•

•

4.

•

•

Page 5

https://data.un-cdn.unnyplay.com/config/Packages/balancy_latest.unitypackage

Skip to content

Launch Check List
Follow this comprehensive workflow for a seamless release of game update on App Store/Google Play:

Preparation Steps

Begin by deploying all recent changes to the Dev environment. Ensure to specify the minimum app version

compatible with the new data.

Rigorously test the app within the Dev environment to confirm everything operates as intended.

Safeguard your progress by migrating data from Dev to Stage environment. This strategy maintains a stable

version on Stage in the event of issues during the review phase, leaving Dev free for ongoing developments.

Build Process

Utilize Unity to Download Data from either Dev or Stage environments. At this point, both environments

should align in terms of data.

Critical Step: Build your game specifying the Production environment in the Init method. Although the

Production cloud may lack data, the previously injected information will temporarily suffice.

Thoroughly test the build. Address any issues, potentially looping back to step (1) for major fixes. Despite

targeting the Production environment, the embedded higher-version data prevails.

Submission

Submit the polished build to App Store/Google Play.

Patiently await approval before releasing the build.

Post-Launch

Post-approval, execute a final migration of data from Stage to Production, mindful of the minimum version

prerequisites.

With everything in place, you are now free to modify data within the Production environment, deploying real-

time updates directly to your players.

Adhering to this checklist ensures a streamlined, efficient, and less error-prone release process, contributing to a

smoother experience for your players and maintaining the integrity of your live product.

1.

2.

3.

1.

2.

3.

1.

2.

1.

2.

Page 6

/data_editor/deploy/
/data_editor/advanced/environment/
/data_editor/deploy/#offline-games
/data_editor/advanced/environment/?h=migra#how-to-connect-to-the-proper-environment
/data_editor/advanced/environment/

Skip to content

Page 7

Skip to content

Live Operations
You’ve heard about Live Operations many times and may think you know everything about it. Yet, when you try to

define the term it turns out to be vague and includes everything from in-game events and promotional sales to

support and community management.

LiveOps strategies help games become living and evolving organisms versus the ‘create – release – start a new

project’ approach. When you run a game as a service, the release date is the beginning of a new life. Like a new

organism, your game is evolving, keeping players constantly coming back for more fun and unique experiences.

Let’s define LiveOps the following way: they are changes and updates you bring into the game after the release

date to engage your players, create long-term relationships with them, and increase LTV of your game.

Here are some examples of what LiveOps can be:

The most common and proven combination for your LiveOps strategy is combining in-game events and

promotional sales. Sales are usually coupled with Events to create sense of urgency to buy. You can make a time-

limited Black Friday sale with huge discounts or start selling new winter skins around Christmas as a part of your

winter in-game season.

✅ Adding✅ a✅ skimming✅ pricing(*)✅ strategy✅ to✅ your✅ shop
✅ Adjusting✅ the✅ frequency✅ of✅ ads✅ to✅ various✅ segments✅ of✅ players
✅ Decorating✅ a✅ game✅ for✅ St.✅ Valentine’s✅ Day✅ and✅ adding✅ new✅ festive✅ skins
✅ Promoting✅ your✅ in-game✅ tournament✅ on✅ social✅ media,✅ where✅ your✅ community✅ gathers
✅ Bug✅ fixes✅ and✅ app✅ productivity✅ optimization

(*)✅ Skimming✅ pricing✅ initially✅ sets✅ a✅ relatively✅ high✅ price✅ for✅ an✅ offer✅ and✅ subsequently✅
lowers✅ it✅ over✅ time.

Page 8

Skip to content

Page 9

Skip to content

Dashboard
Welcome to the heart of your LiveOps strategy - the Dashboard! This is where you can get a high-level view of your

game's activities and performance, all in one place. The dashboard is designed with game developers in mind,

providing you with actionable insights and easy access to key tools for planning and managing in-game events,

offers, A/B tests, push notifications, and more.

Overview

Your Dashboard is the control center for your game's LiveOps. At a glance, you can:

View ongoing and scheduled in-game activities.

Monitor the performance of your campaigns.

React quickly to changes or issues.

•

•

•

Page 10

Skip to content

Page 11

Skip to content

Offers & Items

Item

An Item Document represents one entity within your game. It can be a sword, shield, wood, stone - anything from

your game.

We want to keep this structure as universal as possible. Thus, we only added a few parameters. However, your

game needs much more parameters than we provide. Just create a new Template inherited from Item and add as

many parameters as you need. We have a great template package Merge Game, which can teach you how to do

that and how to operate with complicated item systems.

Store Items

Store Items section contains everything you can sell directly through the in-game Shop or via Game Offers.

Parameter Description

Name The name of the Item

MaxStack The maximum amount of Item, which can be put in one Slot

Page 12

/game_templates/merge_game/
/liveops/smart_store/

Skip to content

Page 13

Skip to content

Inventory
Inventory in games is a crucial feature for managing player-owned items and currencies. It tracks player

acquisitions, whether through in-game purchases, rewards, or other means. Balancy seamlessly integrates

inventory management, ensuring a smooth player experience.

Uses of Inventory

Inventory systems can be adapted for various game types, including:

In-Game Currencies: Managing virtual money, gems, or resources.

Storage in Farm Games: Keeping track of harvested crops, tools, and equipment.

Bag and Inventory in RPGs: Holding weapons, potions, and other RPG essentials.

•

•

•

Page 14

Skip to content

Page 15

Skip to content

Purchases
Balancy facilitates a variety of purchase types to suit different game monetization strategies. Players can acquire:

StoreItem

GameOffer

OfferGroup

Explore the four methods to process purchases:

Direct Purchase

Balancy automates price checks and validations, informing the client about the outcome through a callback.

Learn more about the purchase flow.

Install the Balancy Payments package via Tools ► Balancy ► Updates.

Configure Payments in Balancy, providing necessary validation data.

Methods to initiate a purchase:

Post-Purchase Notification

If you manage the transactions by yourself, use these methods to notify Balancy post-purchase, utilizing receipt

validation. Detailed purchase flow.

Ensure the Balancy Payments package is installed. Tools ► Balancy ► Updates.

Complete Payments configuration for validation requirements.

1.

2.

3.

Setup

•

•

Balancy.LiveOps.Store.PurchaseStoreItem(StoreItem storeItem,
System.Action<PurchaseProductResponseData> callback);

Balancy.LiveOps.GameOffers.PurchaseOffer(OfferInfo offerInfo,
System.Action<PurchaseProductResponseData> callback);

Balancy.LiveOps.GameOffers.PurchaseOffer(OfferGroupInfo offerInfo,
StoreItem storeItem,
System.Action<PurchaseProductResponseData> callback);

Setup

•

•

Page 16

/liveops/smart_offers/#store-items
/liveops/smart_offers/#game-offers
/liveops/smart_offers/#offer-groups
/liveops/purchases/#visualizing-the-purchase-flow
/advanced/payments/
/liveops/purchases/#visualizing-the-purchase-flow
/advanced/payments/

Skip to content

Page 17

Skip to content

Game Events
A Game Event is the first step for launching Game Offers. However, Game Events have a much broader meaning.

You can use them to plan your in-game activities and events like Halloween, Tournaments, Weekends, and more.

Adding Game Events increase your game's retention and engagement.

After installing the LiveOps package, you get a ready-to-use structure for Game Events, and the table looks like

this:

Parameter Description

Name This name is used mostly for your convenience

Attachment Attachment can be either Script, or Game Offer. The script is executed once the event starts. The

script can have any logic, but generally, it's used to Segment players and give them Personalised

Offers. You can read more about scripts in Visual Scripting section. The same way a Game Offer

is activated when event starts, but it simply shows an offer without complex logic. You can learn

more about Game Offers in Offers & Items section.

Condition A condition required to meet to start the event. Leave it blank if you want to run this event all the

time - this approach works for Starter Pack Offers. But if you have seasonal, weekend, or game

anniversary events - you should specify the conditions. In most cases, the conditions are time-

based.

FinishType Defines how the Game Event should end. By default the Game Event deactivates once the

Condition is false, you can change the type to Duration and specify how long the event lasts after

activate. Keep in mind, after deactivation, if Condition is true, the Game Event starts again.

Page 18

/liveops/visual_scripting/basic/
/liveops/smart_offers/

Skip to content

Page 19

Skip to content

Visual Scripting
Visual Scripting is a tool designed to lower the entry barrier to programming. As code is more visible, it needs less

abstract thinking to be understood. Any game designer or analyst can look at it and quickly understand the logic

flow.

We've added VS to Balancy, so you can segment and limit your Game Offers to ensure that the correct player gets

the right offer. The first version of VS is limited, but we plan to expand it so you can use it for anything, even game

logic. The best part of VS is that it lets your designers manipulate game logic remotely and without distracting

your engineering team.

When you click on a View button of any Script, the Visual Scripting tool will launch and open the selected Script.

Parameter Description

Name This name is used mainly for your convenience

Description Helps other team members quickly understand the purpose of the Script

Page 20

Skip to content

Page 21

Skip to content

Scripts
In Visual Scripting, a script is similar to any scripts in other languages: it is a sequence of instructions or

commands that are visually constructed using Nodes and Links. These commands are then executed during

runtime on the end user's device. Scripts are typically used to determine which Game Offers should be shown to

an end user.

Creating a Script

Scripts are created in the Scripts page, which can be found under the LiveOps section of the Navigation panel.

Upon creating a Script, it can be opened by pressing the View button next to the Script name, which will bring you

to the Script View.

Using a Script

After creating a Script, it can be activated in-game by first attaching it to a Game Event. The Script activates as

soon as the Game Event itself activates when its conditions are met.

Note: If a Game Event has no conditions, it will immediately activate upon starting the game.

Inner Scripts

Scripts can also be used within other Scripts. This Script will act like any other Node and can be connected to

other Nodes using Links. This allows you to reuse any Scripts you've created previously, so you won't have to

recreate any logic you find yourself using often.

Below is a normal Script and how it could be used inside other Scripts.

Page 22

/liveops/visual_scripting/nodes
/liveops/visual_scripting/links
/liveops/visual_scripting/nodes
/liveops/visual_scripting/nodes
/liveops/visual_scripting/links

Skip to content

Page 23

Skip to content

Toolbar
In Visual Scripting, the toolbar contains useful tools to help you while building your own Scripts. Upon opening a

Script, it can be found at the bottom of the Script view.

Tools

Here are the tools you can use within the toolbar. Their descriptions contain both the tool icon and its activation

hotkey.

Grab Mode (G)

Switches to Grab Mode. This mode allows you to pan around the Script. It is possible to select and interact with

Nodes, Ports, and Links in this mode, but prevents you from dragging to select multiple nodes.

You will be able to tell if you're in Grab Mode if the Grab icon is highlighted and the Select icon is not.

Note: While in Grab Mode, you can quickly switch to Select Mode by holding the Shift button.

Select Mode (V)

Switches to Select Mode. This mode allows you to select multiple nodes; simply hold and drag the cursor over the

nodes you wish to select. It is possible to select and interact with Nodes, Ports, and Links in this mode, but

prevents you from panning around the Script.

You will be able to tell if you're in Select Mode if the Select icon is highlighted and the Grab icon is not.

Undo (Ctrl✅ +✅ Z) and Redo (Ctrl✅ +✅ Y)

The Undo tool undoes an action taken within a Script. Conversely, the Redo tool redoes a previously undone

action. These tools are helpful if you ever want to quickly revert a mistake you made, or if you simply want to

compare different values quickly.

Page 24

/liveops/visual_scripting/scripts
/liveops/visual_scripting/nodes
/liveops/visual_scripting/ports
/liveops/visual_scripting/links
/liveops/visual_scripting/toolbar#select-mode-v
/liveops/visual_scripting/nodes
/liveops/visual_scripting/ports
/liveops/visual_scripting/links

Skip to content

Page 25

Skip to content

Nodes
In Visual Scripting, nodes are fundamental building blocks that represent specific operations or actions in a Script.

Here are some examples of actions that a node can do:

Some nodes take in some inputs, processes them, then outputs some values (check out Operator Node)

Some nodes simply redirect the Flow of the Script depending on a condition (check out Branch Node)

Some nodes do some system actions (check out Log Node)

Nodes come in different sizes and shapes, are made up of different kinds of Ports, and can be linked to other

nodes through Links, but they are all essential parts of a Script in order for that Script to do something.

Creating Nodes

To create a node, simply right-click on the Script View. This will open up the Node Context Menu, where you can

search for and choose the node you'd like to add. When hovered, each node in the menu will also show a short

description about what they do. Once you found the node you'd like to add, simply click on the menu option, and

the node should be added on the Script View near where you right-clicked.

•

•

•

Page 26

/liveops/visual_scripting/all_nodes#operator
/liveops/visual_scripting/nodes#flow-the-basics
/liveops/visual_scripting/all_nodes#branch
/liveops/visual_scripting/all_nodes#log
/liveops/visual_scripting/ports
/liveops/visual_scripting/links

Skip to content

Page 27

Skip to content

Ports
In Visual Scripting, a port is found on a node and functions as a point of connection that other nodes can connect

into. Ports cannot exist by themselves, and are always attached to nodes. Ports can be connected to other ports

using Links. Once connected, a port can only receive values from, or be flowed into, its connecting port.

Note: There are rules about connecting ports to each other. Some ports can only connect to one other port,

while some can connect to many ports. Check out the Link Rules for more details.

In Ports and Out Ports

There are two kinds of ports:

In Ports - ports going into a node

Out Ports - ports going out of a node

It is easy to tell them apart by checking which side of the node the ports are in. In Ports are always found on the

left side of a node, while Out Ports are always found on the right side of a node. This also holds true for the Script

itself; the Script's In Ports are always on the left side of the Script View, while the Script's Out Ports are always on

the right side of the Script View.

The In Ports include Enter Ports and Input Ports, while the Out Ports include Exit Ports and Output Ports.

Note: One rule about connecting ports to each other is that, generally, In Ports cannot be connected to other In

Ports. Similarly, Out Ports cannot be connected to other Out Ports. However, there is an exception. Check out

the Link Rules for more details.

•

•

Page 28

/liveops/visual_scripting/links
/liveops/visual_scripting/ports#value-flow-with-value-ports
/liveops/visual_scripting/links#link-rules
/liveops/visual_scripting/ports#enter-ports-and-exit-ports
/liveops/visual_scripting/ports#input-ports-and-output-ports
/liveops/visual_scripting/ports#enter-ports-and-exit-ports
/liveops/visual_scripting/ports#input-ports-and-output-ports
/liveops/visual_scripting/links#link-rules

Skip to content

Page 29

Skip to content

Links
In Visual Scripting, a link is the connection between ports and allows nodes to talk to each other. Similar to Ports,

links cannot exist by themselves, and have to always be connected to a port on both ends. Depending on whether

a link connects Flow Ports or Value Ports together, a link may carry either a flow signal or a value between ports.

Note: Check out the Flow: Advanced section to learn more.

Link Rules

Outlined below are all the rules about creating a link between ports.

1. An In Port cannot be connected to itself or other In Ports, and an Out Port cannot be connected to itself or other

Out Ports.

This is the most basic rule that concerns In Ports and Out Ports, the most general categories of ports. This rule is

added to keep the Flow of the Script in one direction.

However, there is an exception. The In Ports of a Script -- found on the left side of the Script View -- can be

connected to the In Ports of a node. Similarly, the Out Ports of a Script -- found on the right side of the Script View

-- can be connected to the Out Ports of a node. This exception is done solely for ease of use. Although, this rule

still applies the same way for Script's In Ports and Out Ports.

Page 30

/liveops/visual_scripting/ports
/liveops/visual_scripting/ports#flow-ports
/liveops/visual_scripting/ports#value-ports
/liveops/visual_scripting/links#flow-advanced
/liveops/visual_scripting/links#flow-advanced
/liveops/visual_scripting/ports#in-ports-and-out-ports
/liveops/visual_scripting/links#flow-advanced

Skip to content

Page 31

Skip to content

Variables
In Visual Scripting, a variable is used to store values into and read values from during the lifetime of a Script. The

value is stored temporarily until the Script finishes running, and cannot be accessed from outside the Script. See

the Use Cases and Limitations of variables to know more about what variables can and cannot do.

Creating Variables

Most interactions with variables are done in the Variables Panel on the right side of the Script View. A variable can

be added by first clicking on the plus icon at the top of the Variables Panel, inputting a Name and variable Type,

and finally clicking on the green +✅ Add✅ Variable button. Once a variable is added, depending on its type, a

default value can be set to it.

Using Variables

Once a variable is created, it can be interacted with in the Script through these nodes:

Get Variable Node - Gets the value stored in a variable and outputs it through its Value Output Port. The type

of the Output Port depends on the type of the variable.

•

Page 32

/liveops/visual_scripting/scripts
/liveops/visual_scripting/variables#use-cases
/liveops/visual_scripting/variables#limitations

Skip to content

Page 33

Skip to content

Analytics
In Visual Scripting, the analytics currently available are mainly to provide more information about your Game

Offers and how they are performing. There are two kinds of analytics shown: User Counts and Game Offer

Revenue from Purchases.

User Counts

The User Counts analytics can be seen on top of the links between Flow Ports. These counts show how many end

users have gone through which nodes and taken which paths through your Scripts. The percentage next to the

user count on a path is the percentage of end users that got through this path compared to the end users that

entered this Script. These can be helpful when determining how many end users have purchased or declined an

Offer.

Warning: Currently, if you have any link loops in your Script, the user count on the paths in these loops may

exceed the number of end users entering the Script, causing them to have percentages greater than 100%. This

is a known issue; we'll update this warning once this issue has been fixed.

Game Offer Revenue from Purchases

The Revenue from Purchases are only available and tracked for Activate Offer nodes. This analytics can be found

next to the node's Purchased exit port. Once your Game Offers are being purchased and getting some revenue, the

revenue will be shown here in USD.

Page 34

/liveops/visual_scripting/links
/liveops/visual_scripting/ports#flow-ports
/liveops/visual_scripting/links#flow-looping

Skip to content

Page 35

Skip to content

All Nodes

Dynamic Nodes

Nodes in this category can change their ports depending on the option that you pick from the node's selection

menu.

Operator

The Operator Node takes in the values from its Input Ports, A and B , processes them depending on the chosen

operator, and outputs the resulting value into the Result Output Port. The operations that can be chosen are

listed below.

Numbers

ADD

Returns the sum of the inputs A and B .

Example:

A = 5; B = 10

Result = 15

SUBTRACT

Returns the difference between the inputs A and B .

Example:

A = 5; B = 10

Result = -5

Page 36

Skip to content

Page 37

Skip to content

In-Game Store
The In-Game Store is the place to generate money for your game. A good store usually has a variety of items

players need during the game. For the convenience of navigation, developers usually split all the content into

different pages, such as Gems, Gold, Limited Offers, Super Packs, Event Items, etc. Each page contains several

slots with different prices.

Follow the instructions to add a Store to your game:

Add the LiveOps package to your game.

Open In-Game Store section from the navigation panel.

+ Create New Game Store with as many pages and slots as you need.

You can preview your work using our Demo project. It should look like this:

1.

2.

3.

Page 38

/liveops/basic/
/liveops/basic/
/game_templates/game_shop/how_to_start/

Skip to content

Page 39

Skip to content

A/B Tests
A/B testing allows developers to run a controlled experiment between two or more versions of something in their

game to determine which one is more effective. Your audience is segmented into the control group (current

performance – no changes) and your test group.

A/B testing is a great way to find the best pricing and game difficulty or test any of your hypotheses.

Before using, all A/B Tests must be added to the table.

Parameter Description

Name The name of the Test.

Groups Each user gets one random group.

Target

Audience

The portion of your total users participating in the test.

Users Type Defines the kind of users to target the test: New, Old, or All. If the app is opened for the first

time, the user is considered a new one until he restarts the app.

Concurrent

Test

Such test ignore the fact that some other tests can be active. All concurrent test will be

activated for your users and won't affect Non-concurrent tests.

Conditions Conditions that are required to start the A/B Test. After A/B Test starts for a player, it won't be

stopped for him even if the conditions turn to False.

PreInitLaunch Defines if the A/B Test can be launched during PreInit and before Balancy OnReadyCallback is

executed. Read more here

Page 40

/basic/plugins/#initialization-parameters
/faq/#how-to-accelerate-balancy-launch-time/

Skip to content

Page 41

Skip to content

Segmentation
User segmentation is the process of separating users into distinct groups, or segments, based on shared

characteristics. Developers might segment users based on language preferences, product version, geographical

region, or user persona.

Balancy has several built-in segments:

Monetary

Defines how much in total the player has already paid in the game:

Frequency

Defines how often the player makes purchases.

Recency

Defines how much time passed since the last purchase.

MaxPay

Defines the maximum one-time payment the player can afford.

-✅ Killer✅ Whale✅ ≥$1500
-✅ Whale✅ ≥$500
-✅ Orca✅ ≥$150
-✅ Dolphin✅ ≥$30
-✅ Minnow✅ ≥$1
-✅ None✅ $0

-✅ F0✅ (None)
-✅ F1✅ (Daily)
-✅ F3✅ (2-4✅ a✅ Week)
-✅ F7✅ (Weekly)
-✅ F14✅ (Once✅ per✅ 2✅ Weeks)
-✅ F30✅ (Monthly)
-✅ F60✅ (Rarely)

None✅ (never)
R0✅ (<1✅ day)
R1✅ (1-2✅ days)
R2✅ (2-7)✅ days
R7✅ (7+✅ days)

-✅ $5
-✅ $10

Page 42

Skip to content

Page 43

Skip to content

User Properties
User Properties allow you to store specific parameters for each player, aiding in audience segmentation,

triggering Game Events, and customizing game logic with Scripts.

Setting Up User Properties

For a new Condition, opt for User Property ► Primitive or User Property ► In Range:

Pick a property, like Level, for example:

1.

2.

Page 44

/liveops/segmentation/
/liveops/game_events/
/liveops/visual_scripting/basic/
/liveops/extra/conditions/

Skip to content

Page 45

Skip to content

Profiles
Profiles introduce a dedicated section for creating and managing user profiles within Balancy.

Creating a structured, singular profile for each user is advised to house all necessary data efficiently. This

organization is crucial for maintaining well-structured data, crucial for game development and operations.

Creating Profiles

Unlimited Profiles: While Balancy allows the creation of unlimited profiles, a single, well-structured profile per

user is recommended for simplicity and efficiency.

Data Types Supported: Supports all primitive data types (string, int, float, etc.), lists, and Data. "Data" refers to

your custom Template with its own parameters, facilitating organized data management beyond simple key-

value pairs.

Technical Limitations

First Layer Restrictions: Primitive data types cannot be added directly to the first layer of your Profile; only

Data parameters are permitted here.

Data Size Limit: Each Data parameter, including all its nested parameters, must not exceed 150Kb. This

constraint is particularly important to consider for parameters storing lengthy strings.

Best Practices for Profiles

Profiles are pivotal for storing comprehensive player progress and data. To optimize profile utility and efficiency:

Data Segmentation: Segregate stored parameters by their relevance and function. For instance, your profile

might categorize data into QuestsProgress , GeneralInfo , Characters , Scenario , Level , etc.

•

•

•

•

•

Page 46

Skip to content

Page 47

Skip to content

Daily Bonus

In many video games, a daily bonus is a reward that a player can receive for logging in to the game daily. The

reward can take many forms, such as in-game currency, items, or special perks. The purpose of the daily bonus is

to encourage players to log in to the game regularly and keep playing. Some games may offer a different daily

bonus each day to keep things interesting for players.

Open the Daily Bonus section.

Add at least one Daily Bonus document. You can have multiple Daily Bonuses for different segments of your

players for testing, or you can change them during the players' progress in your game.

You can create multiple Daily Bonus documents, but since only one of them can be active, make sure the

Conditions of those Daily Bonuses do not intersect. For example you might want to use one Daily Bonus

calendar for players between 1-10 levels, and a completely another one for the 11-20 levels.

1.

2.

3.

Page 48

Skip to content

Page 49

Skip to content

Advertising

After placing a rewarded video or any other Ad, you can track the revenue you made from it using the

following method:

Balancy supports 3 types of Ads:

Rewarded

Interstitial

Custom

You can use the Custom ad type for any ads, which don't fit into Rewarded or Interstitial.

You can use the revenue earned or the amount of placed Ads in the Conditional Logic:

Select the Primitive User Property condition.

Choose ads metric.

You can use Ads in Visual Scripting to run your campaigns. For example: After watching 3 Rewarded Videos

the player gets a Starter Pack Hero offer:

1.

Balancy.LiveOps.Ads.TrackRevenue(<ad_type>, <revenue>, <placement>);

•

•

•

2.

a.

b.

3.

Page 50

/liveops/extra/conditions/
/liveops/visual_scripting/basic/

Skip to content

Overrides
This section allows you to change any parameters based on the conditions.

Examples:

You can change any StoreItem price during the weekend.

You can change Icons for items during the Halloween event.

You can change the script executing during the next event for paying customers.

1.

2.

3.

Page 51

Skip to content

Page 52

Skip to content

Conditions
Conditional logic can be applied to any document. Currently, we use it to run GameEvents. Any condition starts

with one of 2 logical operators And / Or. Then you can add any other types of conditions. The conditions can be as

complex and nested as you want.

Dates Range, Day Of The Week, and Time Of The Day are conditions based on a specific time.

ABTest Condition checks if the user was assigned to a specific A/B Test and Variant.

Active Event triggers only if the specified GameEvent is active right now.

Segment Condition checks if the user belongs to a specific Segment.

Revenue checks if the user has generated a specific amount of in-app/ads revenue(count) during certain

days.

Was Item Purchased checks if a StoreItem was purchased.

Primitive allows you to use any custom User Properties.

Country checks if the user is from the specified country.

Note: Please use this Country condition under the System category instead of getting the custom Country User

Property from Primitive condition.

•

•

•

•

•

•

•

•

Page 53

/liveops/game_events/
/liveops/user_properties/

Skip to content

Page 54

Skip to content

Push notifications
This section allows you to manage server pushes.

You can schedule the sending of a push notification for a specific time and to a specific segment of players.

Choose the player segment wisely to avoid accidentally sending a push notification to a group of players who should

not receive it.

Requirements

Update unity plugin to the last version.

Send Firebase token to our server.

You can do it in Firebase callback Firebase.Messaging.FirebaseMessaging.TokenReceived✅ +=✅

OnTokenReceived :

But sometimes this callback is called before you authorize in Balancy. So you can manually get and send

token after the authorization:

Be careful with segment

1.

2.

a.

public void OnTokenReceived(object sender, Firebase.Messaging.TokenReceivedEventArgs
token) {

Balancy.LiveOps.Pushes.RegisterFirebaseToken(token.Token, data => {});
}

b.

Page 55

Skip to content

Page 56

Skip to content

Section for Programmers
To receive important LiveOps events, such as new Offer activate/deactivate, A/B test started, Segment changed,

etc... follow the next steps:

Create a new class inherited from interface ISmartObjectsEvents . You can use our example

SmartObjectsEventsExample .

1.

using Balancy.Data;
using Balancy.Data.SmartObjects;
using Balancy.Models.SmartObjects;
using Balancy.SmartObjects;
using UnityEngine;

namespace Balancy
{

//TOTO✅ make✅ your✅ own✅ version✅ of✅ this✅ file,✅ because✅ the✅ original✅ file✅ will✅ be✅
overwritten✅ after✅ Balancy✅ update

public class SmartObjectsEventsExample : ISmartObjectsEvents
{

public void OnSystemProfileConflictAppeared()
{

Debug.Log("=>✅ OnSystemProfileConflictAppeared");
//✅ System✅ Profile✅ is✅ created✅ and✅ handled✅ automatically.✅ It✅ contains✅ Scripts✅

progress,✅ active✅ Events✅ and✅ Offers,✅ information✅ about✅ A/B✅ testing,✅ Payments,✅ Segmentations,✅
etc...

//✅ Balancy.LiveOps.Profile.SolveConflict(ConflictsManager.VersionType.Local);
Balancy.LiveOps.Profile.SolveConflict(ConflictsManager.VersionType.Cloud);

}

public void OnNewOfferActivated(OfferInfo offerInfo)
{

Debug.Log("=>✅ OnNewOfferActivated:✅ " + offerInfo?.GameOffer?.Name +
"✅ ;✅ Price✅ =✅ " + offerInfo?.PriceUSD + "✅ ;✅ Discount✅ =✅ " + offerInfo?.Discount);

}

public void OnNewOfferGroupActivated(OfferGroupInfo offerInfo)
{

Debug.Log("=>✅ OnNewOfferGroupActivated:✅ " + offerInfo?.GameOfferGroup?.Name);
}

public void OnOfferDeactivated(OfferInfo offerInfo, bool wasPurchased)
{

Debug.Log("=>✅ OnOfferDeactivated:✅ " + offerInfo?.GameOffer?.Name + "✅ ;✅
wasPurchased✅ =✅ " + wasPurchased);

}

public void OnOfferGroupDeactivated(OfferGroupInfo offerInfo, bool wasPurchased)
{

Debug.Log("=>✅ OnOfferGroupDeactivated:✅ " + offerInfo?.GameOfferGroup?.Name +
"✅ ;✅ wasPurchased✅ =✅ " + wasPurchased);

Page 57

Skip to content

Page 58

Skip to content

Template: Game Shop
Integrate a universal game shop into any game using this versatile template.

Getting Started

Follow these steps to implement the shop in your project:

Add Shop Template: Integrate the Shop Template into your Balancy project.1.

Page 59

Skip to content

Page 60

Skip to content

Game Shop: Prefabs and Classes Overview
Explore the pre-built components and classes in Balancy's game shop, designed for optimal integration and

customization.

Balancy Templates

Badge

BalancyShop.Badge: Contains Sprite and Text information for badges.

The Badge is used as a parameter in UIStoreItem The badge can be displayed in the SlotView or OfferPopup:

•

Page 61

/game_templates/game_shop/data_types/#uistore-item
/game_templates/game_shop/data_types/#slotview
/game_templates/game_shop/data_types/#offerpopup

Skip to content

Page 62

Skip to content

Scripts for Shop

Show Offer Popup

A script that displays a random Available Offer as a Popup under these conditions:

Level-based Trigger: The popup appears every 5 levels.

Shop Exit Trigger: Activated when a player exits the shop without making any purchases.

This setup is just an example, and you are encouraged to modify the logic to suit your game's needs. Consider

implementing a cooldown between popups to avoid overwhelming players with frequent offers.

The RUN METHOD node in the script triggers a C# method using reflection. Specify the full path to the static

method you wish to execute in the input port, such as: BalancyShop.DemoUI.ShowRandomOffer .

C# Method Implementation:

Here's the complete code for the ShowRandomOffer method:

1.

2.

using Balancy.Data.SmartObjects;
using Balancy.Models.GameShop;
using UnityEngine;

namespace BalancyShop
{

public class DemoUI : MonoBehaviour

Page 63

Skip to content

Page 64

Skip to content

Balancy Example

Description

This Demo shows how to create a Store with Segmentation and launch personalized Special Offers.

How to start

In the Balancy Dashboard, click on the Templates.1.

Page 65

Skip to content

Page 66

Skip to content

Template: Clash of Clans
Clash of Clans is a popular mobile strategy game developed and published by Supercell. It was first released for

iOS devices in August 2012, followed by an Android release in October of the same year. The game has since

become a worldwide phenomenon, with millions of active players across the globe.

In the game, players build and upgrade their village, train troops, and battle against other players to earn resources

and increase their rank. The game's success is partly due to its addictive gameplay and regular updates, which

keep players engaged and constantly improving their strategies.

Clash of Clans has received numerous awards and has been downloaded over 500 million times from the Google

Play Store alone. It has also spawned a massive esports scene, with professional players and teams competing in

tournaments for cash prizes.

Store Template

Are you looking to create a store system like Clash of Clans in your game? Look no further than Balancy. Our team

has thoroughly analyzed and reconstructed the data used by Clash of Clans to create their store system, and

we've incorporated that knowledge into our platform. With Balancy, you can see how resources work and what

formulas are used to determine their prices.

Page 67

https://play.google.com/store/apps/details?id=com.supercell.clashofclans

Skip to content

Page 68

Skip to content

Template: Merge Game

Merge games - a captivating sub-genre of puzzle games where players combine identical items to create new,

more advanced ones. These games have grown exponentially, captivating audiences with their intuitive

mechanics and rewarding progression systems.

At the core of merge games are intricate items with unique attributes and functionalities. Some items can boost

your progress, while others might be split, downgraded, or transformed in diverse ways. Given this complexity,

developers often need help storing and managing these myriad items with varying settings.

To assist with this, we've crafted a comprehensive template to address many common questions and challenges

you might face.

For more insights, don't hesitate to explore an article on our blog. While it discusses a solution tailored for survival

games, the underlying principles are versatile and can be adapted for merge games.

Dive in, and equip yourself with the knowledge to take your merge game development to the next level!

Items

Items are the core of any merge game. Each item has a lot of parameters, but the most important one is Item

Effects, here you define all unique features of each item.

Page 69

https://balancy.co/blog/2021/11/15/item-system-in-a-survival-game/

Skip to content

Page 70

Skip to content

Template: Wheel Of Fortune

The Wheel of Fortune mechanic in games involves a spinning wheel divided into different sections, each

representing a prize, reward, or action. Players spin the wheel, and the section the wheel lands on determines

what the player receives or has to do next. This mechanic is often used in games as a way to distribute random

rewards and can add an element of luck and excitement to the gameplay.

Wheels

The Wheel Of Fortune template allows you to create multiple configs. You can provide different rules for each of

the configs. The configs are called Documents in Balancy. One of the parameters in Wheel of Fortune is Condition.

We are going to use it to give different configs for players, depending on their level, but you can come up with any

other segmentation.

Page 71

Skip to content

Page 72

Skip to content

Battle Pass System
The Battle Pass system is a popular monetization strategy in video games, especially in free-to-play online

multiplayer games. It consists of a series of tiers with rewards that players can earn by completing specific

challenges or tasks within the game.

Typically, there are two tracks in a Battle Pass: a free track and a premium track. The free track is available to all

players and offers basic rewards, while the premium track offers more valuable and exclusive rewards but

requires the player to purchase the Battle Pass with real money or in-game currency.

Players progress through the tiers of the Battle Pass by earning experience points (XP) or completing specific

challenges. The more you play, the more rewards you unlock. Once the season ends, a new Battle Pass is released

with a new set of rewards and challenges.

This system encourages continuous play and engagement with the game, as players are motivated to complete

challenges and earn rewards before the season ends. It also provides a way for developers to monetize their

game while offering value to the players.

In the example image above, you can see the two tracks of the Battle Pass. The top track is the premium track,

which includes exclusive rewards such as skins, emotes, and in-game currency. The bottom track is the free track,

which includes basic rewards such as experience points and consumable items. Players can progress through the

tiers by earning experience points or completing challenges.

Page 73

Skip to content

Page 74

Skip to content

Interstitial Ad Strategy
Incorporating an effective ad strategy is pivotal for both enhancing user experience and ensuring monetization for

developers. Drawing inspiration from a study by SuperSonic, this template introduces a dynamic interstitial ad

strategy.

The core principle is to show ads infrequently at the initial stages, specifically every 90 seconds for users up to

level 10. As players become more engaged and progress through the levels, the time between ads reduces. By the

time players reach level 30, they encounter an ad every 30 seconds. Implementing this strategy has been shown

to result in an approximate D7 ARPU increase of ~25%.

Features of the Template

Game Event: Trigger for the Infinite Script

A straightforward Game Event is employed, which instantaneously activates the Script.

Infinite Script Logic

This Script remains vigilant for changes in a player's level. Once a change is detected, it recalculates the

InterstitialAdsPeriod value, adjusting the frequency of ads displayed.

Page 75

https://supersonic.com/learn/case-studies/merge-miners/

Skip to content

Page 76

Skip to content

Ad Watchers Conversion
This Template's purpose is to convert your loyal customer, who watch a lot of rewarded ads, to your paying

customer.

We are tracking how many rewarded ads a user has watched. Once they have watched 20 rewarded ads, they

were exposed to a special offer at a good price. If they convert, we simply finish the script, our goal is achieved. If

they don’t make a purchase, we wait until they have watched 50 ads and make one more special offer for the

same price, but higher value. We kept increasing the value until they finally convert into their first purchase in the

game. And as you know, once users make their first purchase, they are more likely to make the second, third and

so on.

What Template Includes

Game Offers

3 Offers with different value, but the same price of $0.99. Each next offer is more valuable than the previous one.

Conversion Script

The script tracks the amount of rewarded ads watched and shows Offers at 20/50/100 ads.

Page 77

Skip to content

Page 78

Skip to content

A/B Test + Starter Pack
The template has a Script that launches a Starter Pack offer via A/B Test.

What Template includes

Game Offers

2 Offers with different value and price.

A Script

The script waits until player reaches level 3 and then Activates one of the offers.

Game Event

A simple event only launches the Script.

Page 79

Skip to content

Page 80

Skip to content

Don't Disturb
An example of usage of the Don't Disturb flag. With this flag, you can prevent Offers from appearing during the

battle, or Activate offers only on the main screen.

What Template includes

Activate Offer Script

A new version of a Script, which activates an offer, only when the DontDisturb flag is false.

Conversion Script

This script activates the offer using the script above, after 5 seconds of the gameplay.

Game Event

A simple event only launches the Script.

Page 81

Skip to content

Page 82

Skip to content

Content Management System
CMS (Content Management System) is an essential part of Balancy. It is used for creating data structure and

editing the data. Balancy automatically delivers the newest data to the app and parses it to the convenient auto-

generated code, so you can easily access it.

How Does it Work?

You can add all types of objects your game has: weapon, item, construction, monster, hero, location, etc...

You can add as many documents as possible for each type of object. Each document represents a unique

weapon, item, construction, etc...

Open your project in Unity and start code generation requests. Balancy will automatically generate the code

based on the data you provided.

Once the game is launched, all the game data is delivered to the game and already mapped to the generated

code.

Your programmer has direct access to your game's items, weapons, and other objects. He doesn't have to

write any code for downloading or parsing.

All changes in Balancy will be automatically synchronized with the game on launch. You must deploy

changes.

Templates

Template describes the structure and behavior of your game object (item, monster, construction,...). As a

programmer, you can think of it as a class. The template has to have a unique name and may contain a set of

parameters.

Open the Data Structure section, you'll land on the Templates subsection by default. Click on the Create

Template button.

Each Template has several parameters.

1.

2.

3.

4.

5.

6.

1.

2.

Page 83

/data_editor/deploy/
/data_editor/deploy/

Skip to content

Page 84

Skip to content

Data Editor Tricks

Tables

Columns pining

You can pin columns into left or right.

Improved editing

You can navigate through cells via arrows, tab and enter buttons. Also, it's possible to copy-paste cells' values.

Page 85

Skip to content

Page 86

Skip to content

Packages
Balancy has packages/templates system similar to same systems on other platforms (e.g. Unity packages

system). It allows you to install existing public packages and templates made by our team.

The most known and used public package is LiveOps package. It allows you to use additional features like

segmentation, A/B Tests, game events, etc.

Private Packages

You can create your own private packages to use them in your projects. Open packages page and press

"Configure packages".

After that create a new one.

Page 87

/game_templates/game_shop/how_to_start/
/liveops/basic/

Skip to content

Page 88

Skip to content

Code Generation

Why do I need it?

It's a good question because many developers like to rewrite such things in every project.

Here are some reasons for you to consider:

Why would you spend your precious time on a monotonous job? Such things should've been automated a

long time ago.

Human mistakes excluded. A game designer or programmer often misspells a word, and parsing doesn't work

as expected. Such a problem might take some time to be found.

Whenever a game designer changes a parameter or a Template, all of that will be instantly reflected in the

code after the generation. A programmer will remember to apply those changes.

Code generation is tightly connected with other Balancy excellent features, like Localization. Using them all

together gives your team a huge boost.

You can remember JSONs and how to parse them. Balancy will do that for you, so you can only work with

convenient classes.

When a document refers to another document, developers usually use some ID to create those links. Balancy

will do that for you. It automatically resolves all links and gives you direct access to the Documents you

expect.

How to generate code

In Unity, select Tools ► Balancy ► Config, enter your email and password for balancy.dev, and press Generate

Code button.

It might take some time, depending on your connection and the number of Templates you have.

Generated classes will be placed in Assets/Balancy/AutoGeneratedCode.

Please DO NOT change anything in this folder because your changes will be overwritten with the next

generation.

How does it work inside?

Balancy server-generated JSON files based on your Documents and puts them in the CDN storage. Balancy plugin

automatically checks for the updates of those JSON files and downloads only updated files. After that, it parses

the data from JSON to the generated classes and finds all dependencies. The programmer doesn't have to

download, parse, or understand JSON. There is also no need to find any links if any of the Documents refers to

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

Page 89

/data_editor/advanced/localization/

Skip to content

Page 90

Skip to content

CMS Usage Example
In this example, I will show you how you can create a simple craft logic for your game. We will need just several

Templates: Item, Recipe, and Ingredient. I assume you've read and implemented the basics for your game.

Here is the video of this tutorial.

Templates preparation

Select Templates Section and click on Create Template

Set Name as "Item" and leave other fields as default.

Add the following parameters:

Name: (Type: String, Use in display name - YES)

Description: (Type: String)

Create another Template for Ingredients. We'll make it a Component for convenience.

Name: Ingredient

Type: Component

Add the following parameters:

Item: (Type: Document, Reference Template: Item)

Count: (Type: Integer, Default value: 1)

The last template we going to need is a Recipe. Set Name as "Recipe" and leave other fields as default.

Add the following parameters:

Item: (Type: Document, Reference Template: Item)

Ingredients: (Type: List, List Type: Document, Reference Template: Ingredient)

1.

2.

3.

•

•

4.

•

•

5.

•

•

6.

7.

•

•

Page 91

/basic/basic/
https://youtu.be/u1l7hU43AC4

Skip to content

Page 92

Skip to content

Deploy
Whenever you change a Template or a Document in Balancy, it's saved on our servers to be available for your end

users. You can compare all the changes you make in Balancy with commits in GIT, the only difference being that

other Balancy users can see your commits.

When you are ready to publish (like Push in git) your changes for the end users, open the Deploy section in

Balancy and click Deploy button. The process takes a few seconds and once it's completed you can launch your

game in Unity and get all the updated data.

Bear in mind that you are Deploying only to the active Environment. If you want to Deploy the changes to the Stage

or Production environments, please read the Environment page to know more about Data Migration.

Versions

Before you deploy the new data you can set a minimum version for your game and data:

If your game version (Unity ► Player Settings ► Version) is lower than any of those versions, the new data will

NOT be downloaded.

Page 93

/data_editor/advanced/environment/#data-migration

Skip to content

Page 94

Skip to content

Environment
We provide each game with 3 Environments: Development, Stage, and Production. It's a standard and commonly

used approach.

Development used during the development process. All new features and bug fixes are created here.

Stage can be skipped by Indie developers. Big companies usually use it with their own QA department. This

environment is used for testing all the features which were created before. A separate environment for testing

is helpful because it doesn't require the development team to stop.

Production is where all your live clients play.

Workflow

New features are being developed and balanced in the Development environment.

Open the Environment section and migrate your Development data to the Stage environment once ready.

It'll erase all the changes you made in the Stage environment and copy everything from the Development.

Give the build connected to the Stage environment to your QA.

Once QA approves the build, transfer the data from Stage to Production and publish your game build

(connected to the Production) in the stores.

Changing The Environment

You should try to avoid changing the environment in Balancy. In the best-case scenario, you must work in the

Development and transfer the data to other environments.

However, there are situations when you need to change something in the Production environment.

Let's say you have published your game, and your users are playing in the Production environment. Then you find

some bug in the balance, which you want to fix asap. Your team has already prepared many changes in the

Development, so you can only migrate everything to the Production by updating the build. So the solution here is

to switch to the Production environment in Balancy, fix your balance, and Deploy the changes. That's it! Remember

to make the same changes in the Development.

Data Migration

In the Environment section, you can migrate your data

From Development to Stage

From Stage to Production

1.

2.

3.

1.

2.

3.

4.

5.

1.

2.

Page 95

Skip to content

Page 96

Skip to content

Display Format
Imagine you have a very complex structure of conditions based on Components. It should look something like

this:

You can easily change how your components are displayed without changing the logic.

Open Template, which displays the view you want to change.

Select Use custom display format?

Display format becomes available for editing

Use the following code to customize the display:

1.

2.

3.

4.

Name Description

{template.displayName} Display Name of the component will be placed instead

Page 97

Skip to content

Page 98

Skip to content

Localization
We let you import/export and work with all your localization in the Balancy.

When you create a new parameter, instead of selecting type String, make it Localized String. Whenever you try to

access this parameter in the code, it'll instantly give you an already localized value.

Let's say you have a pair "Key": "LocalizedValue":

You create a new parameter with the type Localized String.

In the document, you create a new key or choose existing one.

When you access your parameter from the code, you will get LocalizedValue instead of Key.

1.

2.

3.

Page 99

Skip to content

Page 100

Skip to content

Spreadsheets
You may need to do additional data manipulation in Google Spreadsheets. You can set up import from them into

Balancy and export from Balancy.

Suppose you plan to use Balancy for an existing game in which balance is stored in Spreadsheets. In that case,

this feature helps import all the data into Balancy without filling everything manually.

Setup

Give write and read access to the service account by adding mail google-sheets-

api@balancy-334816.iam.gserviceaccount.com.

Open the Spreadsheets settings window:

Copy the id from the address bar.

1.

2.

1.

Page 101

Skip to content

Page 102

Skip to content

Authorization
Balancy's authentication methods are subject to updates to enhance versatility and, for certain platforms,

processes may be automated for convenience.

Understanding Authentication

Balancy initializes with automatic user authentication via the device's unique ID, associating it with a guest

account. This mechanism ensures persistent user progress, even across reinstallations, provided the device ID

remains consistent.

Users have the option for further authentication methods, such as email or social media platforms, typically

managed through FireBase. Post-authentication, these accounts can synchronize with Balancy using

Balancy.Auth.WithName .

Authentication Scenarios:

Switching Accounts: To transition between Balancy accounts, follow these steps:

Sign out from the current Balancy session.

Utilize Balancy.Auth.WithName for re-authentication.

Linking New Authentication Method: Invoking Balancy.Auth.WithName can link a new authentication

method. However, outcomes vary:

Should Balancy recognize it as a new authentication, the link is immediate.

If another user is already linked to this authentication, a conflict arises. You must then choose between

the local profile or the one on Balancy's servers. Selection dictates whether the new method replaces the

current link or if the local account updates to match the server's data.

Authorization Methods:

Name and Password

As a Guest using the Device ID

1.

a.

b.

2.

a.

b.

Balancy.Auth.WithName(<username>, <password>, authResponse =>
{

Debug.Log("Authorized✅ " + authResponse.Success);
if (authResponse.Success)

Debug.Log("User✅ id:✅ " + authResponse.UserId);
});

Page 103

/liveops/programmers/

Skip to content

Page 104

Skip to content

Payments

Setup

Open the Platforms section and add all the information about the Platform where the game is available. It's

required to validate the purchases.

Open the Products section and fill in all the information about your game's products. In most cases, you need

the main table. However, if you have a different product ID, Name, or Price for other platforms, you can use the

override section for each of the platforms.

Products versioning

If you add/delete products on the products page, users will see these changes even without deploy.

The same applies to migration. Let's say you want to migrate from the stage to the production environment. But

you deleted a product on stage. After the migration, all current users on production will see the new products list

without the deleted product.

Be specifically care when you delete products.

Where to find needed data for validation for specific platforms?

Google Play

For Android, we need a License key.

Open Play Console and select the app you want to find the license key for.

Go to the Monetization setup page (Monetize ► Monetization setup).

Your license key is under «Licensing».

To properly check if the test account made the payment, you need to give us access to service account.

Create a service account.

Link it to the google play dev account.

1.

2.

Make changes with care

1.

2.

3.

4.

•

•

Page 105

https://play.google.com/console/developers/app/monetization-setup
https://developers.google.com/identity/protocols/oauth2/service-account

Skip to content

Page 106

Skip to content

Requests, Response Data, and Errors
All Balancy methods are asynchronous with a callback as an argument, invoked once the method is complete. The

callback parameter is inherited from ResponseData .

Response Example:

You need to check if Success is true to be sure that the request was successful and the Data is valid. Otherwise,

you must read Error to understand what happened. Here is the list of errors that might occur:

If everything is ok, you can read responseData.Data if needed.

public class ResponseData {
public bool Success;
public Error Error;
public object Data;

}

public class Error {
public int Code;
public string Message;

}

{
"success": true,
"error": {

"code": 1,
"message": "unknown✅ error"

},
"data": //some✅ data✅ depending✅ on✅ the✅ request

}

public enum Errors {
NotInitialized = -1,
Unknown = 1,

NoAccessToken = 1000,
StorageRequestsMadeTooOften = 1001,
NoSuchProduct = 1002,
StorageError = 1003,

UnityPurchasing_PurchasingUnavailable = 1010,
UnityPurchasing_NoProductsAvailable = 1011,
UnityPurchasing_AppNotKnown = 1012,
UnityPurchasing_ProductIsNotAvailable = 1013,
UnityPurchasing_PurchaseFailed = 1014,

Nutaku_Error = 1100,
};

Page 107

Skip to content

Page 108

Skip to content

Data Scheme
During the Deploy, Balancy generates JSON files and uploads them to our CDN. For each template, we create an

individual file with the version suffix.

The main file, where you can find the latest versions for all the JSON, is located here:

For example, if you deployed from the DEV environment for the game with guid

11111111-1111-1111-111111111111 , then the address of your versions file is next:

Versions File Structure

The key dictionaries value contains the list of all the templates' info.

https://cdn.unnychat.com/entities/{game_id}/{environment}/versions.json

Parameter Description

{game_id} guid of your game; You can find it the dashboard

{environment} Environment: dev, stage, production

https://cdn.unnychat.com/entities/11111111-1111-1111-111111111111/dev/versions.json

{
✅ ✅ ✅ ✅ "dictionaries":✅ [
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ {
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ "version":✅ "3",
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ "name":✅ "EnemyInfo",
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ "id":✅ "10587"
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ },
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ {
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ "version":✅ "5",
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ "name":✅ "DamageInfo",
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ "id":✅ "12"
✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ }
✅ ✅ ✅ ✅]
}

Page 109

/data_editor/deploy/
https://balancy.dev/dashboard

Skip to content

Page 110

Skip to content

Smart Objects help you create and work with player's progress. It's built on the top of the Storage, but has a lot of

automations. For example it generates the code required to work with the profile, it automatically tracks the changes

and saves them in the cloud. If there is no internet connection, profile will be saved locally, and synchronized with

the cloud was the connection is restored.

Storage
Allows you to Save and Load any data on Balancy servers. Ensure to authorize the player (at least as a guest)

before using the Storage because all records are connected to specific players.

General Information

Collections and Keys

Each player can have a set of Collections, and each collection can have a set of Keys. When you save to the

Storage, you must specify a Collection and a key. However, to Load the data, there are two options:

Load a specific key from a specific collection

Load the whole collection.

You can think of a Collection as a Book, where a Key is a book chapter. You can have as many books as you want

with many different chapters in each one. It's up to you what you want to write in each chapter.

Both Collection and Key are string values. Ensure you are loading from the Collection/Key pair you used to save

your data.

For example

You might have a collection 'Player' with many keys: 'Inventory', 'Spells', 'Stats', etc... When one of the data

changes, you need to update only a small portion, which will be stored in one key. But when you start a game, you

can load the whole profile with all the keys

Versions

Another worth mentioning topic is versions. Balancy handles them automatically, but it would be better for you to

understand how it works. Each record in the database has a version number, which increases every time you

change the data. It's used to prevent using outdated data.

Smart Objects

1.

2.

Page 111

/liveops/visual_scripting/smart_objects/
/liveops/visual_scripting/smart_objects/

Skip to content

Page 112

Skip to content

FAQ

How to Accelerate Balancy Launch Time?

Quick app launches are essential for a positive user experience, as delays can be off-putting. Balancy offers a

solution for apps that can be launched offline, minimizing the impact of web requests on the initial user

experience.

Pre-download Data:

Prioritize downloading data before building your app.

Initialization with PreInit:

During initialization of Balancy, use the parameter PreInit✅ =✅

PreInitType.LoadStaticDataAndLocalProfile . This approach ensures the app launches using locally

available data.

Handling OnInitProgress Callback:

Monitor for two additional cases in the OnInitProgress callback:

BalancyInitStatus.PreInitFromResourcesOrCache and BalancyInitStatus.PreInitLocalProfile .

Full usage of Balancy functionalities is advisable after the latter status.

Background Initialization:

Balancy continues to initialize in the background. Upon completion of online data and profile

synchronization, the OnReadyCallback will notify you.

Conflicts Resolving:

Make sure you are resolving conflicts using the method OnSystemProfileConflictAppeared() , most

likely you need to choose the Cloud version:

Balancy.LiveOps.Profile.SolveConflict(ConflictsManager.VersionType.Cloud); .

Immediate Functionality Post-PreInit:

Most features, except A/B Tests, become operational immediately after

BalancyInitStatus.PreInitLocalProfile . To enable A/B Tests without awaiting full Balancy

initialization, set the A/B Test parameter PreInitLaunch to true . Bear in mind, you won't be able to

change any A/B Test parameters on the fly with this flag. You can only stop such a test or update it with

the next app release.

Final Initialization:

Once all new updates form Balancy are downloaded and the cloud profile is loaded and synchronized with

the local progress, AppConfig.OnReadyCallback and void✅ OnSmartObjectsInitialized(); are

invoked.

1.

•

2.

•

3.

•

4.

•

5.

•

6.

•

7.

•

Page 113

/data_editor/deploy/#offline-games
/basic/plugins/#plugin-initialization

Skip to content

Page 114

Skip to content

Release Notes

April 5, 2024 [Web]

Web

Added password recovery functionality.

Added possibility to authenticate via Google Auth and link Google Account on the profile page.

Fixed unnecessary reloading on deploy page.

Port name now is case-sensitive.

The correct deploy number/version is now shown in history.

March 27, 2024 [Plugin 4.3.60, Web]

Web

Added Profile Field Long condition support.

Added Country condition.

Improved deploy page: warning about deploy best practices and migration, now shows row for migration

without deploy.

Plugin:

Added Profile Field Long condition support.

Added Country condition.

March 21, 2024 [Plugin 4.3.59, Web]

Web

Prevent changing localized string to string.

Fixed issues with adding new shop params.

Plugin:

Fixed dictionary check for cases when template was renamed.

March 18, 2024 [Web]

Web

Added tooltips for Offers Store Item buttons.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Page 115

	Welcome to Balancy Documentation
	What is Balancy?
	Why use Balancy?
	Watch Video
	Join Our Discord

	How to use this guide?

	Step-by-step Integration
	1. Basic Integration (Platform) [30 minutes]

	Integration Guide
	Plugin Installation

	Launch Check List
	Preparation Steps
	Build Process
	Submission
	Post-Launch

	Live Operations
	Dashboard
	Overview

	Offers & Items
	Item
	Store Items

	Inventory
	Uses of Inventory

	Purchases
	Direct Purchase
	Post-Purchase Notification

	Game Events
	Visual Scripting
	Scripts
	Creating a Script
	Using a Script
	Inner Scripts

	Toolbar
	Tools
	Grab Mode (G)
	Select Mode (V)
	Undo (Ctrl + Z) and Redo (Ctrl + Y)

	Nodes
	Creating Nodes

	Ports
	In Ports and Out Ports

	Links
	Link Rules
	1. An In Port cannot be connected to itself or other In Ports, and an Out Port cannot be connected to itself or other Out Ports.

	Variables
	Creating Variables
	Using Variables

	Analytics
	User Counts
	Game Offer Revenue from Purchases

	All Nodes
	Dynamic Nodes
	Operator
	Numbers
	Add
	Subtract

	In-Game Store
	A/B Tests
	Segmentation
	Monetary
	Frequency
	Recency
	MaxPay

	User Properties
	Setting Up User Properties

	Profiles
	Creating Profiles
	Technical Limitations
	Best Practices for Profiles

	Daily Bonus
	Advertising
	Overrides
	Conditions
	Push notifications
	Requirements

	Section for Programmers
	Template: Game Shop
	Getting Started

	Game Shop: Prefabs and Classes Overview
	Balancy Templates
	Badge

	Scripts for Shop
	Show Offer Popup
	C# Method Implementation:

	Balancy Example
	Description
	How to start

	Template: Clash of Clans
	Store Template

	Template: Merge Game
	Items

	Template: Wheel Of Fortune
	Wheels

	Battle Pass System
	Interstitial Ad Strategy
	Features of the Template
	Game Event: Trigger for the Infinite Script
	Infinite Script Logic

	Ad Watchers Conversion
	What Template Includes
	Game Offers
	Conversion Script

	A/B Test + Starter Pack
	What Template includes
	Game Offers
	A Script
	Game Event

	Don't Disturb
	What Template includes
	Activate Offer Script
	Conversion Script
	Game Event

	Content Management System
	How Does it Work?
	Templates

	Data Editor Tricks
	Tables
	Columns pining
	Improved editing

	Packages
	Private Packages

	Code Generation
	Why do I need it?
	How to generate code
	How does it work inside?

	CMS Usage Example
	Templates preparation

	Deploy
	Versions

	Environment
	Workflow
	Changing The Environment
	Data Migration

	Display Format
	Localization
	Spreadsheets
	Setup

	Authorization
	Understanding Authentication
	Authentication Scenarios:

	Authorization Methods:
	Name and Password
	As a Guest using the Device ID

	Payments
	Setup
	Products versioning
	Google Play

	Requests, Response Data, and Errors
	Data Scheme
	Versions File Structure

	Storage
	General Information
	Collections and Keys
	For example

	Versions

	FAQ
	How to Accelerate Balancy Launch Time?

	Release Notes
	April 5, 2024 [Web]
	March 27, 2024 [Plugin 4.3.60, Web]
	March 21, 2024 [Plugin 4.3.59, Web]
	March 18, 2024 [Web]

